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Summary from fast-fracture and time-dependent stress rupture data of
uniaxially loaded test specimens. Ideally, the data are obtained
Material parameters (inert and fatigue) are obtained fromunder conditions representative of the service environment.
naturally flawed specimens. If the inert strength parameters Static, dynamic, and/or cyclic fatigue loading result in a
characterizing the two-parameter Weibull cumulative distribu- phenomenon called subcritical crack growth (SCG). Static
tion function are known, the fatigue parameters for the power fatigue is defined as the application of a constant load over a
Paris, and Walker subcritical crack growth equations can beeriod of time. Dynamic fatigue is the application of a constant
obtained from the appropriate rupture data of standard uniaxiastress rate over a period of time, and cyclic fatigue is the
test specimens loaded in static, dynamic, or cyclic fatigue.repeated application of a loading sequence. Under tensile
Equations are developed for fatigue parameter analysis usin@pading, SCG initiates at existing flaws and continues until a
the least-squares best-fit and/or the maximum likelihood estiflaw reaches a critical length, causing catastrophic failure.
mation method. When the inert parameters are unknown anarious laws such as the power (ref. 1), Paris (ref. 2), and
only subcritical crack growth rupture data are available, thewalker (ref. 3) are used to describe SCG. These laws are
material parameters defining the specimen’s cumulative distriusually obtained from mode | laboratory tests of an introduced
bution function are obtained via the median deviation methodcrack of known geometry. An uncertainty is involved in relat-
Example problems are included. ing these results to a body containing a random distribution and
orientation of inherent flaws of varied geometry and their
interaction under mixed-mode loading. Parameters of the vari-
Introduction ous SCG flaws, derived from naturally flawed test specimens,
tend to compensate for these uncertainties, leading to better
The objective of this report is to introduce a number of agreement between prediction and experimental data.
techniques to obtain the necessary material parameters for a time-For the power, Paris, and Walker laws, analytical methods
dependent reliability analysis of monolithic structural ceramicare derived to estimate the material parameters for volume
components. These parameters (inert and fatigue) are evaluatédws. Analogous equations are obtained for the condition
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where surface flaws are dominant. Using the Ieast-squares»f
best-fit (LSBF), the median deviation (MD), and the maximum
likelihood estimation (MLE) methods, equations are devel- Q
oped for material parameter estimation. The Theoretical Devel-
opment section consists of a brief development of backgroungR
equations for each of the SCG laws, followed by descriptive
techniques for estimating the parameters.

Two example problems are given in the section Experi-Ri
mental Applications. Data from soda lime glass ring-on-
ring and sintered alpha silicon carbide (SASC) C-ring andRO
O-ring specimens (refs. 4 and 5 and Nemeth, N.N. et al.:
CARES/LIFE Ceramic Analysis and Reliability Evaluation R
of Structures Life Prediction Program. NASA Lewis Re-
search Center, unpublished data, 1993.) are used to illusr
trate the application of some of the methods derived herein.

S

T
Symbols

t
A material fatigue parameter (power law)

Y,
A, effective area (fast fracture)
Ay effective area (subcritical crack growth) €

Y/
A, material fatigue parameter (Paris law) ef

X,Y,Z
a crack half-length

Y

B fatigue constant

C function dependent on model and value of probability of

failure r
exp Naperian base v
g g-factor for cyclic load conversion (eq. (8)) o
H step function o
h ring-on-ring specimen thickness g,
K stress intensity factor [op
€n natural logarithm W

m Weibull modulus

probability of failure
Walker law fatigue parameter

ratio of minimum to maximum effective stress in a
loading cycle

inner specimen radius

outer specimen radius

diagonal half-length (fig. 1)

ring-on-ring radial location

variate in equation (70)

time interval for one load cycle

time

volume

effective volume (fast fracture)

effective volume (subcritical crack growth)
Cartesian coordinate locations

geometric crack shape factor

parameter assoicated with MLE (eq. (70))
gamma function

Poisson's ratio

stress

stress rate

Weibull scale factor

characteristic strength

represents locatiom fy,2 of equivalent stress within the
body

_ ¥, represents locationx{y,z, of maximum tensile
N fatigue exponent principal stress within the body
n number of cycles Subscripts:
P applied load c cyclic



max

min

0.5

fracture

mode |

mode | critical

mode | equivalent
subscripts denot&"i(j!") datum in data set
step function time switch
maximum

minimum

radial

surface

transformed

tangential

uniaxial

volume

Weibull

denotes median value

maximum principal

Theoretical Development

The lifetime reliability of a structural ceramic component

static stress will cause the same crack growth as the dynamic or
cyclic stress (ref. 6).

For the uniaxial case, the crack growth is expressed as
da/dt = AKIN. For volume flaws the general case is

da(¥,t)
dt

= AKY (W,1) Q

wherea is the half-crack length¥is the location point;is the
time; A is the material fatigue parameté,,, is the mode |
equivalent stress intensity factor; agis the volume fatigue
exponent.

The termKqu is defined as

Kigq(W:1) = 016 (W. DY a(¥, 1) @)

Wherealeqis the mode | equivalent stress afisithe geometric
crack shape parameter.

Rearranging equation (2) and solving for the crack half-
length yields

K
a(Wt) = ﬁ%ﬁza,‘;’t(w,t) ®

wherekK | is the mode | critical stress intensity factor a;ga t

is the equivalent stress at titné&rom equations (1) to (3), the
equivalent stress distribution at a failure tiyie transformed
to its inert effective stress distributiameo"0 (W) attimet=0
(refs. 7 and 8):

t N (2
depends on the material's inert parametatsog) and the _ O U|e\é("p,t)dt N -2 0
fatigue parameter$\( B) which characterize subcritical crack Uleq,O(w) B B + Uleq\f (L'U*tf )D (4)
growth. Material parameter estimation methods are developed E E

for the power, Paris, and Walker equations. The power law

expresses the crack growth increment per unit time, whereas

the Paris and Walker models express the crack growth increwhere Oleqp (W) is the same asrleq(w,t) and the fatigue
ment per cycle. The analytical relationships in this section haveconstanB is

been derived for volume flaws; analogous relations are obtained

for the case where surface flaws dominate.

Power Law

Analysis—Dynamic or cyclic fatigue stress in conjunction

B = 2

= = C)
AYZK 2N, -2)

with the power law is transformed into an equivalent static When the initial flaw size is much smaller than the flaw size at
stress through the use of g-factors. Implicit in this conversionfailure and the fatigue parametéyis large, as is the case for
is the assumption that over the same time interval the equivalerteramics, equation (4) reduces to



0t oy (] Hence,
0oy
Oleqo(¥) = : B 0 (6)
E H Ny |jJ(NV—Z)
W)= B (“o)al o)t 0
Ulji,o( 0)‘ 0 B, 0
Next follows an analysis of static and cyclic fatigue. Satisfying O O
the assumption that the equivalent static stress distribution
Oleq (%) produces the same amount of crack growth as the %7 ( ) ( ) dJ(NV_Z)
perlodlc cyclic stress distribution over one cycle’s time interval i \"0/9 it O (10)
T results in By E
N
Yy=gW) v W 7 . . . .
G'eq( )=9(%) aleqcmax( ) ™ Subscript 1 denotes the maximum principal tensile stress at

fracture. Equation (10) Wi'[h)'f equal tooy; represents the
where theg-factor is defined as transformahon of the maximum pr|nC|paI static stress
oy (Wo)g V(WO) at tg;tothe inert stres@y oWy att=
For the uniaxial We|buII model, the scale factgy, is a
material property and the probability of failure is expressed as

®) A
Ple(thI) 1- ap?%ﬁ I o—ljlol’u)dV% 1y

) ) . ) _with the integration over the volunyeand
The g-factor for static and dynamic fatigue are available in

closed form. Numerical integration is required for most load

conditions. A summary aj-factors for various loading func-

tions is given in table I. % f“ D
The fatigue parametelsandB are calculated from rupture  91ji, o

test data obtained from uniaxially loaded specimens. For a

<

O
0 TDQ Jleqc("u t) d\‘

o e

T

O
&
Mmoooooogd

9(¥) =

oo

given applied constant static stress Iev%b]'quc (WO)]

O (lIJ ) and the time to failure of tH& specimen i For :c\_lv (W)g(W)t iy
static or cyclic fatigue, thg-factor will appear in the compu- = O J J % (12)
tation of the maximum equivalent static stress at locatign 0 B 0

The datac(rf (Y% i ) are ranked for each stress ley@vhere

j varies from 1tq, and varies from 1 tg. For thé™ specimen . ) )
of rankr, using Benard's formula (ref. 9 = (r — 0.3)/ Equation (12) represents the transformation of the equivalent
(p + 0.4). ! static stress dlstrlbunon at '[IIT}F to an inert stress distribution

For the specimen uniaxial Weibull model, the characteristic O1ji, oW)at=
strengthoy,, is dependent on the specimen geometry. The Forthe compatability of failure probabilities, a basic require-
probability of failurePfji is expressed as ment is that all models produce the same probability of failure

for a uniaxial stress state as that obtained for the specimen
uniaxial Weibull model. To satisfy this requirement, the value

_ E erji 0( )g“v% of N, remains invariant whereas the fatigue parantteill
Iiji (tfji) =1- expD-ED o, H O ©) depend on the probability-of-failure model. All failure model
H Y H dependentfatigue parameters (su@)gshe specimen uniaxial

Weibull model) are directly proportionalBawvhich is given by

wherem, is the Weibull modulus, anédjis the location of the equation (5). For large valuesitf, all failure model dependent
maximum principal stress at failure. fatigue parameters approach a common value.



TABLE |.—g-FACTORS FOR VARIOUS LOADING FUNCTIONS

[H(tt) = 1 fort=t,; H(tt) = 0 fort<t,; oy, 2 0]

Loading fanction, g-Factor, Waveform
Um«(f) N
t c. (1
g=— L L dt
TJdy 6! )
m"max
Static fatigue 1 Cleqc
G, = Constant :
o I
I
T¢ .
I
t
Dynamic tatigue 1 T |
f
. N+l
O = or o
t
Cyclic square wave N
o+ U“ 7
O, ) = OIH(1.0) — H{ta )] + 0, [H(12) - H{LT)] ! @ 1 " t, ty—>
Lt T o1
|
t
Sine wave a4
0 rentd
1 JP1 ot (‘71 - Ull)S”D?DD
© a -0, ) (zm] TR TR I S Y O dt o .
o ty= | — [sin] — [+] —— 0 0 .
fege 2 T 2 5 ! 5 T laﬁ
t
Cyclic sawtooth wave
2{a'l - c.r”):
o!eqr:“) = T roy N
o - & 71
. T 1 2]
= | Hir, oy - H| £ — —_— s
2
(.'\u-l)(crI —au] ¢
o, -, % T T on
+[—-’T_“+2crl—0'”:| :
t
'
x| H b= |-HLT)
p
Pasitive half-pulse of sine wave N+l
T
F( 2 ) o
1

B S P )

wol]

t

ANemeth, N.N. etal.: CARES/LIFE Ceramic Analysis and Reliability Evaluation of Structures Life Prediction Program, NASA Lewis Research Center, unpublished

data, 1993.

"When o, < 0, the value of the g-factor is generally obtained numerically by integrating over the time interval where g, (1) > 0. The following simple example
illustrates how this case is treated. Given a sawtooth cyclic wave defined by (+, ) over time interval Tas (0, 7, ), (T/2, ;). and (T, &, ) with B = o, /0,

7
L0205 [1/(1 +|oy 1/a,|}]r = 3T/, Hence, g = yTJlm {[2 (ol - a”)f/T + cr“]/al}“'d:

=— 1/3. The interval where o,
Ti2

N
=2/T {[2{1 — Rt ]f T+ R} dt. Thus, the resulting g-factor is g = 3/[4{N + 1)].
TR




Equating the risk of rupture of the specimen uniaxial Weibull

model to that of the uniaxial Weibull model results in

I(N,-2)

g, 0"
He,, H

Da w D‘”‘VN 20y
f’( ) de——
v[pfj(qjo)lj @ Ve

whereV, is the effective volume for no subcritical crack of the fatigue parametefs, andB,,,

2fn§n(1— Py )-15
m,

n%n(l Pf“) 15
m,

éntﬂi+

N (wo)a™
4Bunda’ B

Vv

-/n

-/n O (llJO)

im[mfw i
MmO Smo

(15)

This equation is the basis for a least-squares best-fit evaluation
using all the available

growth, and/ o IS the effective volume when subcritical crack rupture data. If the same risk of rupture is maintained, from

growth occurs:

and

my,Ny,) /(N —2)

[IafJ (¥) D( v

IV [ fj (qJO)D

Using the above equations to eliminatg, andB,,,, from the
specimen uniaxial Weibull model yields

Ui, [V
i (D)o “o)tsVe T E
Pfjl(tfjl) 1- eXpD_D Ny, -2 0
D 8 BwIo’ B

wherem, =m, /(N, - 2). Thus,

O O
O O
O O
0 N, -2 0
_d BiwIo U -N
=0 ) am, D V(%0) = Ciioy ¥ (%o)
d O O
oo 2 -10 g(l’uo)D
Hl-re) 5 E

14)

whereC; varies with the probability of fallunéfI Taking the

equation (13), all fatigue rupture dataﬂ(wo) tm) can be
transformed to an equivalent data s&{(fy), tr;;) for a given
value ofN,;

(16)

oo (W) = mi n[crfj (wo)]

SubscriptT denotes the transformed data. The probability of
failure for this case is

0 0 d“vD
g o U
R
O Tji O
Pfjl(tle) 1 eXpD_DD Jlll - g@@7)
E ED BwIo E
0 e (#o)a(4o)ve .

Parameter estimatior—The following are techniques which
may be used to determine the parameters for static and cyclic
and then for dynamic fatigue using the power law formulation
just described.

Method I-Least-squares best fit using median vallike
inert material parametemng, ando,, are known. For the median
values, and taking the natural logarithm, equation (14) yields

it )os =Ny ()| _+(Cj)os

natural oganthm of equation (13) and manlpulatmg italgebra-where subscript 0.5, denotes the median value. 8jnee0.5,

ically yields

intercept C i)o.51S @ constant. Substituting the set of median



values ¢;(¥p), t;)o 5 into the above equation permits solving  For the set of datiay (%), t;;, Py;), the equivalence of failure

for 5|opeN and |nterceptq )o.5 From the known value o, probability allows determlnlngo(lI 0, Pf”) These values are
g(¥p) andV, can be computed From the value of the inter- substituted in the above equatlon to solve Ngrand the
cept,B,, is obtained. intercept. They-factor is evaluated using the valueNyf and

Method ll-Maximum likelihood estimation using median B is obtained from the intercept. A one-to-one correspondence
values The inert material parameters are known. Based on théf the inert data to the fatigue data is assumed.

least-squares best-fit result fgyas a starting valu®l{ .. ,mel Method VI-Median deviationThe median deviation
the median valuesof(¥,), t), 5 are transformed via equa- (ref. 10) method is a measure of the spread of the data about the
tion (16) to the data setrf(¥), iTji)O.S' The maximum likeli-  Median value. This approach is used when the inert parameters

hood estimation method is applied to equation (17) wjtas are unknown and only time-dependent fatigue rupture data are
the variate to obtain the valu@,. From this valuel available. From the minimization of the median deviation, the

. . computed . N, -2
can be determined and compared Wity eq When both ~ material parameters,, N,, andB,,, o, “ are evaluated. For

values are within some specified tolerance, the solution is2n assumed value i, the daté(%(%) t;;) are transformed
obtained. If not, the two values are averaged and the process Wa equation (16) into( %), tTji). From the transformed data,
repeated. After convergence, théactor,V,, and thef,, are the median deviation for the total number of data pajpts
evaluated.
Method lll-Least-squares best fit using all fatigue rupture
data The inert material parameters are known. The data are q p
ranked for each value ofJ(QUO) in accordance with the magni- MD =-— z z ‘/ﬁn '[Tji -/n tTO .
tude of tfJI to obtain the data setaé(QUO) i Pf i) PA (== '
Substituting these values into equation (15) permlts solvmg for
N, and the intercept. The value Nf is used to evaluate the
g-factor anaV, and the intercept is used to solve gy, 1 dn(l Pfu)
Method I\/.—Ma_X|mum Ilke_llhood estimation using all fatigue , pq j:].l:l Hm 1 0.5)
rupture dataThe inert material parameters are known. A value
of N, is assumed based on the least-squares best-fit regression
analysis. All the data are transformed via equation (16). The
maximum likelihood estimation method is applied to equa- The process is iterative, covering an appropriate rand of
tion (17) withtr;; as the variate to solve fai, . The value oN, values. The value &4, associated with the minimum value of
is computed and compared with the assumed value. These two
values are averaged and the process is repeated until the

(20)

assumed value is within a specified tolerance of the computed a2 ‘Znt _int ‘
value. When this tolerance is achievg(d), V4, andB,,, are Z Z Tji Tos
evaluated. T

Method V-Least-squares best fit to evaluate unsubscripted _ _
B: The value oBin equation (6) is not model dependent and canis the solution. Once the valueNf has been determined, the
be obtained by using both inert and fatigue rupture dataWelbU” modulus can be obtained for knowAy since

Equation (6) for static and cyclic fatigue reduces to =m/(N, — 2); hence
Ny -2 _ oy (%o)o(+o)ty O ( - ..)_l

B n‘\/:iMD =

Wherealji ol ¥p) isthe inert strength (maximum principal stress
at fracture) obtained from the rupture data associated with

(05(%). ;) by equivalence of raniy;). From equation (18)  After computingg(¥,) andV, the value of IBWVU “2)is

after some algebraic manipulation, then estimated from the median valug. [ ¥,), tT“]O_5 via
equation (17).
— _ Dynamic fatigue—For dynamic fatigue tests at a constant
Mg +2n 0y 0(¥) = Ny| N0y o(¥) = Ino g () Yy g y g

stress rater ., the time to failure of thé" specimen |51;fI or,
equivalently, the maximum stress at failure assomatedoi\{ ith
an B E (19) is g (Wy)- Replacingg; (W) in equation (13) wittwg; (¥p),
B8 ti Wlth Gjj (W) o; (WO) andg(¥,) with 1/(N,, + 1) y|elds



Maintaining the same risk of rupture for the specimen uniaxial
Weibull model, allaf“(wo) o; (Wo) are transformed into

a7 (¥, gT (W) via

0

|] N, +1 U

N af“ (wo)Veg ™
50, o) B (1+ N, )05

o
—2 0@
d p
= O

R . . 67(¥p) = min 5 (%))
Since g is the independent variable, equation (22) becomes !

(24b)
. (Ny+D)
a..(W):DaDiT(%)dJ 05 (W)
oo 4, 8 i Fo d-((.U)D fii (¥o
fn@n? 07t ol
H ot~ Py
m, s (WO) Thus
- g 1 B = . O
2/nlin 0
19 H oL Pﬂi% H 0Q g O
== oy (w)+ -mna,(w)0 00 N+ 0 O
Ng m, Sy ong oy g O
0 0O Phi =1 expg—D—D. _— 0 (25
E a E E[P-TBW\/JOVV B
N 1y,
o 78\V) a
1 2 yiWam o afas g( 0) o 0

ef
+-——nd U (23
Ny -2

NV ng +1) Bwvaovv E ) ) ) ) ) ) )
This form is used in conjunction with the MLE method with

N, +1 .
aTjiV+ as the variate.

For the median deviation method, transforming the data via
equation (24b) results in the following:

At location Y0, sincedfji = o tfjl Wheretfjl is the time to
failureof the fh specimen under stress rax? another form of
equation (22) is

1 a0p
= z z ‘En o — (N UTO'S‘

0=
EZ 01 Pd fmf=
2/nln
J'Hi-Py
n
" 1 ON, -2089 P O Pfji ED
= HZ z mGE———0 (26)
0 -10] 0 pqrr\/HN +1 =5 O m2 0
gﬁnﬁn(l‘ﬂji) g . E : 0 0
:NVD m, —Enaj—fntfjiu = H
O O
B H
Parameter estimation methods | to VI are now applicable to the
O Nv-2m, g dynamic fatigue case.
@ _25 (243) _
%B,W(1+ N ) Paris Law

Cyclic effects on slow crack growth are dependent on the

Similar to equation (14), equation (22) can be expressed as duration and the number of cycles. Modeling for cyclic effects
is based on phenomenological critera (Paris law, Walker law)

1/(Ny +1) traditionally used for metal fatigue. As shown in a previous

(N, +1)
0 i (%) = U (*o )C section, the Power law expresses the crack growth increment



per unittime. This section will describe the Paris law formulation,For a periodic cyclic stres&(¥,n) and Oleqtnax (¥,n) are
which expresses the crack growth increment per cycle. independent ofi; hence,

Analysis—The Paris law formulation describes the cyclic
loading by incorporating in the analysis the difference between

N N
the maximum and minimum stress intensities. The rate equa- Eoleacmax (W)= R Vg

tion is given as

da(¥,n)
dn

= ALK g (W) (27)

whereA, is a material fatigue parameter,

K _
a(¥,n) = @%galé&n(w, ) (28)
and
AKleq(W,n) = aleqcmax (‘,U,n)—crqucmin (W,n)|Y/a(¥,n)

=Olege, (W, n)[1- RW,n)]YJaW¥,n)  (29)

whereR is the ratio of the minimum to maximum equivalent

stress in a loading cycle,

o
I .
R(W,n) = cmin_
o €0Cmax

aleqc,O(w) =0 B

Z
|
N
~

+ o (win) (32)

Cmax

I:I:JI:II:II:H:IEE

For {olzeqcmax (P)1- RW)] N, n; /B} >>1, equation (32) is
approximated as

Jotee (W)1-RW) N n, g
Oleeo¥) =0—™= 5 E

Equation (33) represents the transformation of the stress distri-
bution atn = n; to its inert stress distribution at= 0.

The fatigue parametefs, andB are obtained from cyclic
rupture data tests on uniaxially loaded speciments. For a given
value ofj, a.ssomated WIth stress Iewg(k.uo) = [aqu aX(QUO)] 1
where ¥, is the location of the maximum cyclic stress, the
number of cycles to failure for tiif8 specimen i$1fji. The data
{afj(‘-lfo) 1 —Rj(‘-PO)], nfji} are ranked for each valuejpivhere

(33

andn is the number of cycles. From equations (27) to (29), thej varies from 1 taandi varies from 1 tg. For that specimen

transformed stress becomes

n N
Efo ‘-rRm Moy (W.n)dn
0

Ojeq,0(¥ing) = B
U
dJ(NV—Z)
N, —2 O
ol (W) E (30)
where
B 2 (31)

T AKN (N, —2)V?

of rankr subjected to stress leygthe failure probability is

_r-03
il = p+04

Maintaining the same risk of rupture for the specimen uniaxial
Weibull model and the uniaxial Weibull model results in

5o v
DEn 1- Ry (%) (w)NVE 5
N fji{[‘ i O]Ufj o} §
Pfjizl_eng'g 5 = E 5(34)
\"
od B0’ [ O g
DE A VY A E 0
H o H



and
Ny
g c“{afJ (wo)t-R (wo)]} (35)
where
0 0
0 0
0 0
O N -2 O
_u vaaovv g
C.=0 =—] (36)
o 4™ g
Mo Ve O O
aa 10 O
Frl-Pa) g
and
)/(Ny—2)
HafJ(L.U)[l R(W)] B( v l(By
Vy = dv (37)

A e
From equation (35)

m(ng)=mc; - N, en{aﬁ W1 R (wo)]} (39)

and
2 fn%n(l— Pfji)_lg
/n nfji + m,
. nn|l- P-i -0 .
- N\E[ % (”\, ) H—gn{afj (wo)t-R (wo)]}g
; -
0 ]va |
—Enﬂiﬂ (39)
HBuwa B

with af(wo) [1 —-R (%] the independent variable an@ the

dependent variable. Maintaining the same risk of rupture for albf 05 (Y [1 -

data{afj(wo) [1- R](WO)] nm} are transformed intdo{( ¥)
[1 RT(LIJO)] nle !

where
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Rr (¥)] = min{afj (wo)[l— R (wo)]}

gafj [1— R ( )] e

or(¥p)[1-

N = 0 3 ng (40)
Tji — (’UO [1 RT ] fji
and substituting into equation (34),
0 -
0o oo
0o 0O
a 0 0 0
_ 05 Mji o O
Pgi =1-expCr 0(4))
It T J
O Ny -2 O
O vavaov |
O Ny 1F O
. JT(L'UO)[:L_ RT("UO)]} Ve v 0

Parameter estimatior—The following are techniques which
may be used to determine the parameters for cyclic fatigue using
the Paris law formulation just described.

Method |I-Least-squares best fit using median vallesinert
parametersm, and g, are known. For the median values,
equation (38) becomes

s

where the subscript 0.5 denotes the median value. Since
Psi = 0.5, the intercepin(Cji)o 5 is a constant. Substituting the
set of median values into the above equation deteridjreasd
(Gji)os Vetis computed anBy,, is found from the value of the
intercept.

Method IFMaximum likelihood estimation using median
values The inert parameters are known. An initial valuks,aé
assumed based on a least-squares best-fit regression analysis;
{crf (Y [1- RJ(WO)] nr,}0 5 are transformed via equation (40)
to the data se{taT(llJO) [1 —R{(¥9)], Mrji}o5 The maximum
likelihood estimation method is applied to equation (41) with
(Nrji)o.5 as the variate; then the valuerdf is obtained. From
this value NyggmedS compared Withe, . o The process is
iterative. When both values are within some specified tolerance,
the solution foiN,, has been found. After convergendg,and
B, are evaluated.

Method lll-Least-squares best fit using all fatigue rupture
data The inert parameters are known. The data for each value
. (Y] are ranked in accordance with the
magnitude ohfI to obtain the data s(avf (¥ [1 =R (¥l
Mg, P - These values are substituted in equation (39) to evalu-
ateN and the interceptfy is determined and from the value of
the mterceplBWV is obtained.



Method IV-Maximum likelihood estimation using all The process is iterative, covering an appropriate rang of
fatigue rupture dataThe inert parameters are known. A value values. The value df,, associated with the minimum value of
N, = Nossumed'S @ssumed based on the least-squares best-fihe median deviatioMD,,;, is the solution. With\,, and Pfji
results. The data are transformed through equation (40) to datanown,
set{o(¥) [1 — R{(¥Y], npi}. The maximum likelihood
estimation method is applied to equation (41) Wit]has the

variate to solve for,. The value oN, is computed and then N-2 1 40P Eﬁ”(l_ pf,i)‘lg
compared with the assumed value. These two values are aver- m, = e 2 /n 57]_15 (45)
aged and the process is repeated until the assumed value is MDmmin P9 j=1i=1 Hén(l‘o-f_’) E

within some specified tolerance of the computed valyend
B, are evaluated.

Method V—Least-squares best fit to evaluate unsubscripted Brhe value ofBWVo—c’)\flv_2 is then estimated from the median

The value oB, equation (31), that is not model dependent canyalue{ or (W) [1-Rp (W), nTji}O sVia equation (41).
be obtained using all the rupture data (inert plus fatigue). Intro- '

ducing the subscriptsand; into equation (33) with reference to  \walker Law

specimen number and stress level, respectively, yields

Analysis—As illustrated in the previous section, the Paris
law formulation describes the cyclic loading by incorporating in
(42) the analysis the difference between the maximum and minimum
B stress intensities. However, this approach does not take into

H account the effect of the stress réRdi.e., the ratio of the
minimum to maximum cyclic stress). For metals, it was ob-
and served that the higher the positive valudRothe greater the
amount of crack growth. To incorporate the effect of stress ratio
on crack growth, the Walker formulation is used. The Walker
nng +2inay; o(%) =N, (fn 93ji.0(%o) —fn{aﬁ (%) law rate equation is given as

Uo v (w ) 1= RM (@ )|, B
allj\:\,lo_z(‘/Jo):EafJ ( 0)[ : ( O)]nmg

[1— R (%)]} B (4 dawin) _
dn

Ny _ ALK (W)
' 1= Ry, m) ¥ N

A, KN (W, aK

Wherealji,o(%) is the inert maximum principal stress associ- 46

ated withng; by the equivalence of rank. Thus, the inert stress (46)

035,015 matched wit oy (%) [1 —R (¥)], ). The above  whereK|q, = Kieqg, o, ANDQ is the Walker material fatigue

equation is used to solve féyand from the intercept, evalu&e parameter. Whef, aexquaIsNV, the Walker law reduces to the
Method VI-Median deviatiorThe median deviation meas- Paris law:

ures the spread of the data about the median value. The median '

deviation method is used when the inert parameters are unknown

and only subcritical crack growth rupture data are AKigq = Y0 eqc (¥, n[1-RW,n)]JaW,n) (47)

available. From the minimization of the median deviation,

the material parameters,, N, and the producIvacr(')\\'/v_2

are evaluated. For an assumed valub pthe datg 0; (W) where
[1 - R (%], ny} are transformed via equation (40) into Oleqe,, (¥,n)
{o(W¥) [1 - RTZQUO)], Mrj}. From the transformed data, the R(¥,n) :o—(l#n)
median deviation for the total number of data pajpts 1€0C e
1 9P and
MD—aZZ‘EnnT“ mnng 5‘ K 2
J=1= aW.n) =G0 Oigen(Win) (49)
! Y H legc,n\ "’
q p Eﬁn(l—P--)_lD . .
-1 2 z /n fii) O (44) wherenis the number of cycles. From equations (46) to (48), we
m, PA &5 EZn(1—0.5) 10 obtain the transformed equivalent stress distributian=an;
E to its equivalent inert stress distributiomat O:
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Oeqe, W) = aleqc,n(w’n =0) Equation (52) represents the transformation of the maximum
principal stressgy at ng; to the inert stresgy; 5 atn = 0.
0 Q N Maintaining the same I‘ISk of rupture for the specimen uniaxial
_ EIO o-le\acmax (W,n)[l— R(%¥, n)] vdn Weibull model and the uniaxial Weibull model results in

0 B
0 0o V@2
a a
Q-2 i ny E 0
o2 (win,) 8 (a9 oD o 0
max H 0 DD 5 vwaov (Q =T 0
HB@U v [1 R Ny, (Qy-2)/m, E H
where (53a)
B= 2 and
2 Q-2
AYH(Q, = 2K N N
_ - v
Fora,eqqnax(w,n) andR(¥,n), independent af,
where
W) 1-Rw)"n Q,-2
Uleqco((’u) = Ealeqcmax [ ] f C. = I Bw
B g ﬁQV-Z)/fT\,
0 Ve O
-10
-2
ro () Q-2 0 on(1-py) 0
|€aCmax E
and
N
For{crlzeqcmax (W)1-RW)] Vg / B} >>1, D , v /(Qy-2)
QV(t,U)[l R (W)]
Vg |:| av
Q- 1= R @)
IQeqc )[1_ R(‘P)] n, EU Ea 0 ji\to U
Olegc,o0 = U (5D
eq B E From equations (53),

The fatigue parametel, Q,, andB are obtained from cyclic nng =mC; —-Q, (nag(¥) - N, g”[l_ R (l’uo)]
rupture data on uniaxially loaded specimens. For a given value
of j, associated witlarfJ (W) = [aquqn (WO)]J, the maximum  and
principal stress in the specimen, the “Aumber of cycles to failure
of theit" specimen '$‘f| The data{af (QUO) [1- R] (Wl nrjl
are ranked for each valuejof/vherej varies from 1 tq andi 5 mDn(l_ P__)'lﬂ 0 nDn(l_ P”)‘l
varies from 1 t@. For the specimen of rank Pg = — 0.3)/ . H i) B %[ : i) H
O
B

(p + 0.4). With this subscript notation, equation (51) becomes " m,

Q-2
5 Wo)[l‘ R (wo)] anjigu 0,92

5 @ (52) N ﬂ[ ]Hnwg (55)

U{ji,o(wo) =

0O& DL_C‘.‘.D
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Maintaining the same risk of rupture for the specimen uniaxialThe data are substituted into equation (58) to solve fax,,
Weibull model, all fatigue rupture da(terfj (W [1 —Rj (Wl andB.
ng;} are transformed to an equivalent data §et (%) Method IV-Maximum likelihood estimation using all data
(1 -Ry (¥)], ny;} for given values of, andN,; This iterative process involves determining val@gsN,, and
B, @ssumed unique to the data. The inert parameters are known.
Based on LSBF results, the valublg = N, ,meq@nd .
(56) Q, = Qussumeg@® assumed. The data are transformed via
equation (56). The MLE method is applied to equation (57),
with Ny as the variate to solve fon/(Q~2) and then to
computeQ,. This value is then compared with the assumed
whereo; (¥, andR; (%) are the lowest values of the set of \5ye. IchomputediS within a specified tolerance @qq,med
data{ gy (¥p) [1 — R (%]} Substituting equation (56) into  the solution is obtained. If not, the next valugpis assumed to

_ o ("”0)[1' R (%) i -
i =L, Ny D
Hor ("Uo)[l" RT(WO)] H

equation (53) yields be the average of these two values. If no solution exists, the
process is restarted with a new valueNQl eq
0g dﬂ\,/(Q\,—Z) 0
0 [l
S
i 0cF &% £ o  Experimental Applications
B L} 0
Q Ny, (Qy=2)
=i EE“T V(9o R ()] Vv mv H The examples in this section employ some of the equations

presented in the preceding theoretical sections. It is under-
(57) stood in this section that failure occurs at locatiéyy and
therefore said notation will be omitted in the subsequently

Parameter estimation—The following are techniques which developed equations. Inert room-temperature and dynamic
may be used to determine the parameters for cyclic fatigue usingttigue fracture data are analyzed for (a) soda lime glass,
the Walker law formulation just described. ring-on-ring square plate test specimens and (b) sintered

Method I-Least-squares bestfit regression plane using@lpha silicon carbide (SASC) material obtained from O-ring
median valuesThe inert parameters,, andm, are known. ~ and C-ring specimens at 1200 and 1300

The data median valugs; (%) [1 -R (¥)], ng;)o s are substi- For the soda lime glass material, inert parameters are
i R] 0) ! nfjl 0.5 . . . .
tuted into equation (54f; = 0.5 andC; is now constant;, obtam_ed using thg Iea_st-squares best-fit (LSBF) _and maxi-
Q, N, are computed via the least-squares best-fit regressiofum likelihood estimation (MLE) methods. Dynamic fatigue
plane analysis/,;andB,, are then evaluated. data are then utilized in conjunction with these known inert

Method ll-Least-squares best-fit regression plane using allParameters (obtained via the LSBF and MLE methods) to
data The inert parameters,, andm, are known. For each generate fatigue parameters f_or the_ soda lime glass. This
value ofj from the data, ranked in accordance with the value of2PProach was used to determine fatigue parameters for the
ng;, the values dPy; associated withoy (%) [1 -R (¥Q)], ng;} L_SBF method. The MLE method did not converge toa solu-
are obtained. From a least-squares best-fit analysis of the dalin. The results of these methods are presented. Finally, the
applied to equation (55Q, andN, are computedV andB,,,, soda lime glass dynamic fatigue data are used in conjunction

are then evaluated. with the median deviation (MD) method to obtain the cumu-
Method lll-Least-squares best-fit regression plane to evalu-lative distribution curve defined by the WeibuIINpagameter
S_ .

ate unsubscripted :Brhe value ofB in equation (49) is not ~m, the fatigue parametel, and the produd, o
model dependent and can be obtained using all the rupture dataFor the sintered alpha silicon carbide material, inert pa-
(inert and subcritical crack growth). The transformed maxi-rameters are obtained using the least-squares best-fit (LSBF)
mum principal uniaxial stre$1-i’0(w& in equation (52) is and maximum likelihood estimation (MLE) methods. Dy-
taken as the inert strength distribution. The inert strength isnamic fatigue data are then utilized in conjunction with these
associated Wit|{|0'fj (%) [1 —R]- (¥, nfji} by equivalence of  known inert parameters (obtained via the LSBF and MLE
rank. For eachvarying from 1 tay, the subscriptvaries from methods) to generate fatigue parameters for the SASC
1 top. There arg-specimens tested for each valug. dfrom material.

equation (52), Simulations have shown (ref. 11) that the standard devia-
tion for the MLE method is smaller than that for the LSBF
nng +2inay; 6(%) = Q, [(n 03ji,0(¥) —(nog (‘Vo)] method. However, all experimental data reflect some degree

of error (ref. 12) and flaw variability. Both methods (MLE
and LSBF) are used in the determination of the relevant

-Ny Zn[l— R (L'Uo)] +nB  (58) parameters.
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Soda Lime Glass

Inert data (table 1l) and dynamic fatigue data (table Ill) were
obtained from soda lime glass ring-on-ring specimens (fig. 1).
For this material, inherent surface flaws were the source of
failure (Nemeth, N.N. et al.. CARES/LIFE Ceramic Analysis
and Reliability Evaluation of Structures Life Prediction Pro-
gram. NASA Lewis Research Center, unpublished data, 1993).
The radial stresg, and tangential stress,, on the tensile
loaded surface are equal for radiusR, the radius of the load
ring

a 2 _r2\0
_, 8P R0, 09[R -RY)
Utan —Ur —m%(l"‘V) gnEEE‘FT%(Sg)

whereP is the applied load) is the specimen thicknessjs
Poisson’s ratio, ang is the diagonal half-length of the square
plate specimen (fig. 1). The maximum principal stress for
r 2R is the tangential stress

. 2 ?) o
Oun = ooty L+v) i f- ‘“”WE%B
O

(60)

+ 2(1_\/)5%52

oood

Inert data analysis—For the soda lime glass material, inert
parameters are obtained using the least-squares best-fit and maxi-
mum likelihood estimation methods.

For the least-squares best-fit method applied to the inert data,

g L (61
/nlén = ho; —m./no 61
H%% my i~ Ms s

where P;; is the probability of failure of thgh specimen,
obtainedJ from the ranking o;j; my is the Weibull modulus;fj
is the maximum tangential stress at failure ofithspecimen;
andoy, is the characteristics strength. Figure 2 shows a plot of
the ring-on-ring inert data and the solution obtained using the
LSBF method.

For the maximum likelihood estimation method applied to
the inert data,

0 0

Uo .. "

Py =1-epEn g = (62)
EEP—GSD B

14

TABLE I[.—INERT DATA FROM SODA LIME GLASS
RING-ON-RING SPECIMENS

Thickness, | Fracture load, || Thickness, | Fracture load,
i, £, i, P,
mm KN mrm kN
1.0990 1.5420 0.4285 1.4150
1.4830 1.4520 6478 1.3510
1.5540 1.5420 7980 1.4920
1.3650 1.5220 5124 1.4340
12910 1.5050 7424 1.5250
8305 1.5340 1.5070 1.5180
9756 1.4920 8223 1.4430
1.7910 1.5190 1.4640 1.5260
5491 1.4480 1.0920 1.4780
1.5000 1.5320 1.2260 1.5¢70
6928 1.3310 1.3110 1.4750
6418 1.5660 1.8130 1.5590
4529 1.4050 1.4800 1.5260
6357 1.4940 1.5880 1.5450
6153 1.4370 1.5230 1.4950

TABLE IIL.—DYNAMIC FATIGUE DATA FROM
SODA LIME GLASS RING-ON-RING

SPECIMENS
Fracture stress, &, MPa (at various stress rates,
o, MPa/sec)
Tp;at Op; at Op; at Ty at

6,=002| 6,=020| ¢,=2.00 [ 6,=2000

188.677 138.963 235,176 | 267.279

43414 186.046 | 324237 | 250.898
238163 53.900 112.060 | 302.116
163.981 226.200 69.95% | 200.791
214.390 | 228609 224.201 85.021
180.811 110.241 360.756 533.321
206.690 355.705 174.677 307.547
135.819 50525 312900 | 782.393
108.489 231.543 182.485 377.911
273.027 63768 | 271.662 311192
143.526 312.097 311.681 172.435
113.158 184.891 226,959 | 202.541
212.336 255.119 99.672 | 253.662
137.006 245,585 164974 | 339,116

67760 112.365 104515 | 211.909
246.808 164962 | 286925 | 259.588
247317 162755 | 264994 | 237430
189.628 150471 109795 | 302.684
164.883 77.447 133134 | 360206
114.253 151.813 321.845 310427
216,749 215.165 136.249 | 293215
216.407 129.921 140,760 138.294

97.967 135.024 | 213386 | 320906

98,705 128776 | 234744 | 269308
132,668 136.033 373.915 | 470079
108,464 268.623 313.608 252,308
120,170 241.587 269,948 257.600
169924 | 236.632 288936 | 335.608
172,539 177.63¢ | 227179 | 223475
246.477 188.238 326,009 | 428672
--------- 191.009
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Figure 1.—Ring-on-ring loaded square plate
specimen. Poisson's ratio, v, 0.22; outer ring radius,
R, 16.090 mm; inner ring radius, R;, 5.015 mm;
diagonal half-length, Ry, 35.921 mm.
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9 | I

5.5 6.0
€n O'fj

Figure 2.—Ring-on-ring inert data and least-squares
best-fit line. Weibull modulus, mg, 2.675; scale
factor, o, 15.76 MPa-mz/ms; effective area, A,
191.0 mm?2.

Forj varying from 1 taq (q = total number of test specimens),

q
Mg
qzafj
i=1

Ms="7 q q (63)
m, m
qz afjsﬁn o - Z moy, z afjs
= ERE
and
0a /ms
0 o—g‘s i
O O
= 0
095 0 q 0 (64)
O O
O O
O O

L 1
The scale factor ig ¢ = OgsPe

v,

and afj(r) = 0,,(1) is the maximum principal tangential stress
distribution. Figure 3 shows a plot of the ring-on-ring inert data
and the solution obtained using the MLE method.

Dynamic fatigue data analysis-In this section, fatigue
parameters are determined using dynamic fatigue data in con-
junction with known inert parameterg and g, (obtained via
the LSBF and MLE methods). The effective atgais assumed
constant for all specimens.

For the least-squares best-fit method applied to the dynamic
fatigue data, equation (22) is utilized for surface flaws by replac-
ing subscript with s. After some algebraic manipulation, where
o is the independent variable, the linear regression function is
given by

m . .
S, where the effective area is

0 og(r) d°
O— —=0O dA

65
o5 =0g (©9

00 3
/ntin
Ik,
mg
B 0o 4, O E
2/nlin
_1H H %_Pﬁi% . H
——[fnaf“+ -/ OJ-D
Ns O mg O
O O
H H
O (Ng—2)/mg O
+ Ly M (66)

N, "N, +2)B,00% 21
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where the effective area is

0 oy CMN) (NG -2)

O— —=~0 dA (67)
A Pgir=0g

Abf:

Figure 4 is a plot of the ring-on-ring dynamic fatigue data; also
shown is the solution obtained using the LSBF method applledJI.
to the median data values given in table IV. Figure 5 is a plot of= ™% | &
the ring-on-ring dynamic fatigue data and shows the solution,g

obtained using the LSBF method, to all the dynamic fatigue daté;‘

given in table lIl.

2_

enen (1 =P )]
1
I

i, -

3

-4 9 | | |
4.5 5.0 5.5 6.0 6.5

{n U'fj

Figure 3.—Ring-on-ring inert data and maximum
likelihood estimation line. Weibull modulus,
mg, 2.869; scale factor,o g, 19.20 MPa-m2/Ms;
effective area, A, 182.6 mm?2.
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Figure 4.—Ring-on-ring dynamic fatigue data and least-
squares best fit to median data values. Weibull modulus,
my, 2.675; scale factor,o ¢, 15.76 MPa-m2/Mg;
exponential fatigue parameter, N, 12.68; Weibull
fatigue parameter, B 1.21 MPaZ2-hr; effective area,
A_,171.4 mm2,
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Figure 5.—Ring-on-ring least-squares best fit to all
dynamic fatigue data. Weibull modulus,mg, 2.675;
scale factor, o4, 15.76 MPa-m2Ms; exponential fatigue
parameter, Ns, 13.84; Weibull fatigue parameter Bws’
0.468 MPa2-hr; effective area; Ag¢, 173.0 mm?2

TABLE IV—DYNAMIC FATIGUE MEDIAN
VALUES FROM SODA LIME GLASS
RING-ON-RING SPECIMEN®

Stress rate, Tangential fracture stress,

g, O g
MPa/sec MPa
0.02 171.23

240 177.64

2.00 230.96

20.00 275.85

Shown in fig. 1.

If the effective areaAef is not constant (i. eAefJI) equa-
tion (66) can be written in another form:

%D 1 0
/mn n?%
H /n Ufji +INO, = —i[fn(Ns+1)
m N
R
/nlin
1 H _Pfji% .
Nsl] mg
0
=

U

2 B
/n Aefji +2/o 0 (68)

O

B

N -
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The process for computirld, is iterative. The value & is The value 011:’fji is obtained from the ranking of the failure
assumed to be constant for all specim is constant). This  stress.

constant value is used to calculate a starting valdg feq. (66)). The solution is obtained by assuming an appropriate range of
Then, this starting value bf and the specime@vefji values are  values foN\, based on the least-squares best-fit result. With the
used to begin the iterative process. Iteration continues until thgalue ofN, fixed, a starting value fan, is assumed equal to the
assumed value df is equal to (or within some specified inert value. Based on this value, a computed Weibull modulus

tolerance of) the computed valueNgf m,. is obtained. A new value of; is assumed equal to +
SlnceafJI =0, tf“, WheretfI is the time to failure of thié my)/2, and the process is repeated until convergence. Conver-

specimen under stress rakg, another form of equation (66) for gence is assumed to occur when the absolute value of the

surface flaws is difference i, —m) is < 0.01. The process is repeated, chang-

ing the assumed value Nf until the computed value of . is
equal to the known inert value. For the soda lime glass dynamic
oo 4, fatigue data examined here, this convergence did not occur, as

anQn?% shown in figure 6. The inert value of the Weibull modulus
H i obtained via the maximum likelihood method is 2.869. At the
mg start, for a fixed value dfg = 4 and an assumex, = 2.675,
convergence occurred after six iterationsto= 0.856. In most
cases, convergence occurred after two iteration®\Jarying

U o0OQg 1 0 from 4 to 44, the largest value of, obtained was 2.570. The
Dfn@n% O computed modulus did not converge to the inert value of the
_ H H fii Nt =G % Weibull modulus, 2.869.
=ENG——— - . :
*0 mg fi ' The value ofB, for the ring-on-ring square plate test
O 0 specimen is obtained via the specimen uniaxial Weibull model
H = and least-squares best-fit method. The stress transformation
equation is
0 AbeS 2)/m, 0
- (nQ >0 (69) O gNs* F(Ns=2)
N_+1 g fjl (”U )
HNs +)Busoos B O 1eqol¥p) = L 00D (7)

ad BN +1)E

For the maximum likelihood estimation method applied to
the dynamic fatigue data, withy andg,g known, analogous to  Thus, the probability of failure is expressed as
equations (62) and (22) is

_ fji
P. =1-exp* g 70 v
fi pE Hz'H g 70 ¢
@
>
=
e 8
where the vanatSfji is £
ER
i Nea s e
S. =00 B
" g o 5
J o
S
o
© | | | | |
and parametet is 0
0 10 20 30 40 50
Assumed exponential fatigue parameter, Ng
N+ 1) dJ(N -2) Figure 6.—Fatigue parameter determination for soda lime
g B\Nsa glass data via maximum likelihood estimation method.
0 AefN =-2)/'mg |] No convergence. Weibull modulus, mg, 2.869; scale
O O factor, o4, 19.20 MPa-m2/Ms,
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0.3245 —
[l s (]
0 Wieq0l%0)E 70
Py =1~ expﬁﬂ%(o)[l H f 0.3240
H H 9¢s H H §
5 0.3235
SR e ) I s :
=1-exp-d—F Ne=ZD) 0 (72§ 03230
S
H %71 BUS(NS +1)095 O H 5
S 0.3225
=
and 0.3220 | | | |
10 1 12 13 14
0 Qg 0 Assumed exponential fatigue parameter, N
/nn 1 Figure 7.—Median deviation sum (MD) as function of
E %l - P % assumed exponential fatigue parameter N.. Solution is
fji ) . S
—/n O Weibull modulus, mg, 2.33; fatigue parameter, N, 13.1.
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becomes the basis for a least-squares best-fit evaluation. Equ£ -4
ing the risk of rupture of the specimen uniaxial Weibull model to
that of the uniaxial Weibull model yields the relationship @)
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Figure 8.—Median deviation distribution for fatigue

parameter, Ng, 13.1; Weibull modulus, mg, 2.33;
For large values &, A; tends towardy, andB, tends toward Z,1083.8 (MPaNs-sec)/(Ns-2), The terms Pfj +and

Bys ) o Z are defined in equation (70).
For the median deviation method applied to the soda lime

glass dynamic fatigue data, it is assumed that no inert data are

available. From equation (26) (for surface flaws replace sub-diagrams of the specimens, including nominal dimensions, are
scriptv with s), the value ol = 13.1 produces the minimum infigure 9. The SASC dynamic fatigue data are the mean values
valueMD, ;... Figure 7 shows the variation of tD value as ~ based on at least seven specimens. They are assumed herein to
afunction of the assumed valué\pf For assumed valueshf be the median values. For this material, inherent volume flaws
that are less than 10.0 and greater than 13.1Mibevalue were the source of failure (refs. 4 and 5).

continuously increases. A plot of the distribution solution Inert data analysis—For the sintered alpha silicon carbide

versus the experimental fatigue data is given in figure 8. material, inert parameters are obtained using the least-squares
best-fit and maximum likelihood estimation methods. Fig-
Sintered Alpha Silicon Carbide (SASC) ures 10 to 13 show plots of the SASC O-ring and C-ring inert

data and the solutions obtained using the least-squares best-fit
Inert data (table V) and dynamic fatigue data (table VI) weremethod. Figures 14 to 17 show plots of the SASC O-ring and
obtained from sintered alpha silicon carbide O-ring and C-ringC-ring inert data and the solutions obtained using the maxi-
specimens tested attemperatures of 1200 and@386hematic = mum likelihood estimation method.
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ALPHA SILICON CARBIDE O-RING

TABLE ¥V —INERT DATA FROM SINTERED ‘
AND C-RING TEST SPECIMENS

Specimen O-ring C-ring
nur:;ber, Temperature, °C
1200 1300 | 1200 | 1300
Fracture stress, Iy MPa
1 350.3 | 281.0 ) 256.9 1 249.5
2 2864 | 3094 | 237.0 | 2075
3 268.1 | 2654 | 2159 | 2359
4 2424 | 30L.1 | 2542 | 2475
5 3382 | 3379|2139 | 1806
6 2947 | 2535|2319 | 24850
7 2843 | 2733 | 2157 | 198.2
8 3005 | 2339 | 2466 | 200.0
9 2486 | 201.0| 2069 | 202.1
10 287.2 | 3023 2192 | 2773
11 2686 | 2721 | 2484 | 2664
12 2832 | 284.1 | 2620 | 3056
13 2657 | 3139|2913 | 2596
14 3070 | 231.3 | 2644 | 2530
15 2743 | 282.0| 2514 | 3000
16 2763 | 2999 | 243.0 | 180.8
17 | 2917 | 268.6 | 200.2 | 3163 o _
18 3035 | 2206 | 266.4 | 2789 O-ring in diametral compression
19 2931 | 227.7| 2008 | 2857
20 2724 | ——— | 2899 | -—-
TABLE VI.—DYNAMIC FATIGUE ¢
MEDIAN VALUES FROM SINTERED
ALPHA SILICON CARBIDE
O-RING AND C-RING
TEST SPECIMENS
Stress rate, Temperature, °C R,
o,
MP. afsec 1200 1300
Fracture strcss.cﬂ, MPa
O-ring
350.0 275.7 3135
35.0 251.2 271.7
35 2342 | 2498 R;
C-ring
100.0 253.9 256.0
10.0 2293 2254
1.0 218.2 2054
Dynamic fatigue data analysis—Table VI contains median ?

values of SASC O-ring and C-ring dynamic fatigue test data at
1200 and 1300C and at three stress rates. The least-squares
best-fit method is applied to the dynamic fatigue data by using
the inert parameters obtained via the MLE method. Figures 18 Figure 9.—O-ring and C-ring test specimen configuration
and 19 show plots of the O-ring and C-ring dynamic fatigue ;’:}‘l:‘fa";'i:‘:' gf‘“f;sé'%‘rf{_%‘i‘gi; "jdé”;' n’fo' 22.2 mm;
data and the solutions obtained using the least-squares best-fit T ’ T )

C-ring in compression
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Figure 10.—Least-squares best fit to 1200 °C SASC
O-ring inert data. Weibull modulus, m,,, 12.51; scale
factor, o, 65.98 MPa-m3/My; effective volume,
V,, 6.32 mm3.
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Figure 11.—Least-squares best fit to 1300 °C SASC
O-ring inert data. Weibull modulus, m,,, 9.66; scale
factor, Ooy 4 .59 MPa-m3/mv; effective volume,
Ve 7.07 mm3.
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Figure 12.—Least-squares best fit to 1200 °C SASC C-ring
inert data. Weibull modulus, m,,, 9.63; scale factor, o,
43.89 MPa-m3/’"v; effective volume, V,, 39.20 mms3.
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Figure 13.—Least-squares best fit to 1300 °C SASC C-ring
inert data. Weibull modulus, m,,, 6.56; scale factor, o,
20.91 MPa-m3/’"v; effective volume, V,, 58.00 mms3.
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Figure 14.—Maximum likelihood estimation fit to 1200 °C
SASC O-ring inert data. Weibull modulus, m,,, 10.68;
scale factor, o, 51.02 MPa-m3/mv; effective volume,
V,, 6.32 mm3.
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Figure 15.—Maximum likelihood estimation fit to 1300 °C
SASC O-ring inert data. Weibull modulus, m,,, 10.01;
scale factor, o, 44.49 MPa-m3/’"v; effective volume,
Vg, 7.07 mm3
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Figure 16.—Maximum likelihood estimation fit to 1200 °C
SASC C-ring inert data. Weibull modulus, m,,, 9.46;
scale factor, o, 42.52 MPa-m3/My; effective volume,
Ve, 39.20 mm®.
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Figure 17.—Maximum likelihood estimation fit to 1300 °C
SASC C-ring inert data. Weibull modulus, m,,, 7.04;
scale factor, o, 24.82 MPa-m3/My; effective volume,

V,, 58.00 mmS.
Temperature, Weibull Scale Fatigue parameters
°C modulus,  factor, N, By
m, Sy MPa2-hr
MPa-m3/m,
0O 1200 10.68 51.02 27.23 0.112
O 1300 10.01 44.49 19.30 4.992
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=
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Figure 18.—Least-squares best fit to SASC O-ring
dynamic fatigue median data.

21



Temperature, Weibull Scale Fatigue parameters
°C modulus,  factor, N, B,y
m, Cov MPa2-hr
MPa-m3/m,
O 1200 9.46 42.52 29.43 0.461
O 1300 7.04 24.82 19.93 0.551
-5.35 —
g
S -540—
é> O
5 -5.45 —
o~ -5.50 —
|
= 555
c
> O
S 560 ' ' | | '
0 1 2 3 4 5 6

22
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Figure 19.—Least-squares best fit to SASC C-ring
dynamic fatigue median data.

method based on equation (66). The slope of the line is given by
1/N,. For median values, the formulation generally used is

/n dj
/n o :W_-'-Cji (74)
where
O =0g
and

00, 0 =

/nbn B N—ZD

TSR e
N, +1 m, N, +1

is a constant sinc@fji = 0.5 for the median values.
e general equation (66) was used to compute the fatigue
parameters.

C.
T

TABLE VIL.—SUMMARY OF RESULTS FOR SODA LIME GLASS RING-ON-RING SPECIMENS

Method Data results
Inent Dynamic fatigue
All data Median values Effective
. area,
Weibull | Characteris- Scale Effective Surface Weibull Surface Weibull A
modulus, | tic strength, factor, area, fatigue fatigue fatigue fatigue m;*:'g
my Cas. O Ao exponent, | parameter, | exponent, | parameter,
MPa MPa-neims|  mm? N, B, N, B,..
MPa’-hr MPa’-hr
Results from present analysis
Least-squares 2.675 387.0 1576 191.0 --- -— 12.68 1.21 171.4
hest fit
2.675 387.0 15.76 191.0 13.84 0.468 - - 173.0
Maximum 2.869 3859 19.20 182.6 No convergence | ———————————— —— —— —— —
likelihood
Median 233 -——- {a) - 131 (@ -—= -——— -—=
deviation -=-
Results from Nemeth et al.”
Least-squares 2.673 3953 2237 b) - -——— 12.60 (b {b)
best-fit
median values
Maximum 2.871 3942 -—— -—- - - == == ==
likelihood
Median 2.344 - 1500 by 11.88 229 -—- --- (b)
deviation

N_-2
*The product (B, o = )is known from eq. (70).
"Values based on Batdorf model in Nemeth et al.; CARES/LIFE Ceramic Analysis and Reliability Evaluation of Structures Life
Prediction Program. NASA Lewis Research Center, unpublished data, 1993,



TABLE VIIL.—SUMMARY OF RESULTS FOR SINTERED ALPHA SILICON CARBIDE SPECIMENS

Specimen | Temperature, Least-squares best-fit inert data Least-squares best-fit dynamic
s - - fatigue data median values
Weibull | Characteristic | Weibull Effective _ -
modulus, strength, scale volume | Fatigue paramcters | Effective
., Fo4 factor, Ve,3 N, B volume
MPa mm 3 Ver,
Oov MPa® —hr| .03
MPa-n#mv
Q-ring 1200 12.51 298.5 65.98 6.32 27.24 | 0.11 3.38
1300 9.66 200.3 41.59 7.07 19.30 | 4.98 5717
C-ring 1200 9.63 257.9 43.89 30.20 2043 | 161 3560
1300 6.36 265.2 2091 58.00 19.92 | 1.96 50.50
Maximum likelihood inert data Least-squares best-fit dynamic
fatigue data median values
O-ring 1200 10.68 298.9 51.02 6.32 2723 | 0.1 5.38
1300 10.01 290.1 44.49 7.07 19.30 | 4.99 577
C-ring 1200 9.46 258.0 42.52 39.20 20.43 1.61 35.60
1300 7.04 264.7 2482 58.00 1992 | 1.94 50.50

Table VII contains a summary of the inert and fatigue the two-parameter Weibull distribution is assumed adequate
parameters from the analysis of the soda lime glass dataand the effect of the shear stress distribution in the flexure test
Table VIII contains a summary of the inert and fatigue param-bar is assumed negligible. With the many apparent uncertain-
eters from the analysis of the sintered alpha silicon carbide datdies, both methods (MLE and LSBF) are presumed acceptable.

The theoretical development and experimental applications For time-dependent reliability analysis, the material fatigue
presented indicate that the general equation (66) or (73) shoulgarameters, in addition to the inert Weibull parameters, must be
be applied to obtain the fatigue parameters when all the speckevaluated. In the examples presented, dynamic fatigue data are
men rupture data are used. For the median values, equation (66jilized in conjunction with known inert parameters
was used in preference to equation (74). (obtained via the LSBF and/or MLE methods) to generate

material fatigue parameters for the soda lime glass and SASC.
Both examples included illustrate the successful use of the
Conclusions LSBF method to determine the fatigue parameters. However,
the MLE method applied to the dynamic fatigue soda lime glass

A reliability analysis of monolithic structural ceramics data from ring-on-ring specimens did not converge to a solu-
depends on material inert and fatigue parameters obtained frorion. A third approach, the median deviation method (MD), was
fast-fracture and time-dependent stress rupture data. Integratealso successfully used in conjunction with the dynamic fatigue
design computer programs such as CARES/LIFE (Ceramicglata to obtain the cumulative distribution curve for the soda
Analysis and Reliability Evaluation of Structures LIFE Predic- lime glass.
tion Program) use analytical methods such as those presented A comparison of results obtained for different models
in this report to estimate material parameters and subsequentfyVeibull and Batdorf) is given. Different models resulted in
determine the time-dependent reliability of complex structural different equations for the effective area and fatigue param-
ceramic components. eters. The median deviation method was applied to the dynamic

For fast-fracture reliability analysis, specimen rupture datafatigue data to obtain a qualitative estimate of the Weibull
are utilized to determine the inert material Weibull parametersmodulus, exponential fatigue parameter, and the product
In the examples presented, the least-squares best-fit (LSBR)arameter. Although these results are sufficient to define the
and maximum likelihood estimation (MLE) methods were probability distribution function of the test data, the individual
applied to obtain the material inert parameters for soda limevalues (scale factor and fatigue constant) comprising the prod-
glass ring-on-ring and sintered alpha silicon carbide O-ring andict parameter are necessary for life prediction.

C-ring specimens. Simulations have shown that the standard

deviation for the MLE method is smaller than that for the LSBF

method. The direct relationship of the standard deviation to the

preciseness of the value calculated suggests that the MLEewis Research Center

method is preferred. However, all experimental data reflectNational Aeronautics and Space Administration
some degree of error as well as flaw variability. Furthermore,Cleveland, Ohio, September 7, 1995
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